Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk

نویسندگان

  • Muhammad Ashraf
  • Anwar Kamal
چکیده

Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constant injection velocity at the porous disk. An extension of Von Karman’s similarity transformations is applied to reduce governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson’s extrapolation is used to obtain higher order accuracy. The numerical results reflect the expected physical behavior of the flow phenomenon under consideration. The study indicates that the magnitude of shear stress increases strictly and indefinitely at the impermeable disk while it decreases steadily at the permeable disk, by increasing the injection velocity. Moreover, the micropolar fluids reduce the skin friction as compared to the Newtonian fluids. The magnitude of microrotation increases with increasing the magnitude of R and the micropolar parameters. The present results are in excellent comparison with the available literature results. 2008 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Flow and Heat Transfer Analysis of Micropolar Fluid through a Porous Medium between Two Stretchable Disks Using Quasi-Linearization Method

In this paper, a comprehensive numerical study is presented for studying the MHD flow and heat transfer characteristics of non-Newtonian micropolar fluid through a porous medium between two stretchable porous disks. The system of governing equations is converted into coupled nonlinear ordinary ones through a similarity transformation, which is then solved using Quasi-linearization ...

متن کامل

Numerical Simulation of Micropolar Flow in a Channel under Osciatory Pressure Gradient

We numerically investigate the pulsatile flow and heat transfer of a micropolar fluid through a Darcy-Forchhmeir porous channel in the presence of wall transpiration. We use the central difference approximations for the spatial derivatives, whereas the time integration has been performed by employing the three steps explicit Runge-Kutta method to obtain the numerical solution. It i...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008